
Multi-objective parallel machine scheduling with incompatible jobs

Proceedings for the ROADEF 2014 Conference, February 26-28 2014, Bordeaux, France

Simon Thevenin
HEC - University of Geneva

Switzerland
simon.thevenin@unige.ch

Nicolas Zufferey
HEC - University of Geneva

Switzerland
n.zufferey@unige.ch

Jean-Yves Potvin
Université de Montréal

Canada
potvin@iro.umontreal.ca

Abstract

We consider the problem of scheduling n jobs with differ-

ent processing times on parallel identical machines with

job incompatibility constraints and preemption possibil-

ity. Three objectives have to be minimized in lexicograph-

ical (or hierarchical) order: makespan, number of job in-

terruptions, and sum of throughput times over all jobs. A

linear programming formulation, a greedy heuristic and a

tabu search are proposed to solve this problem.

1 Description of the problem

The problem, denoted (P) in the following, consists
in scheduling a set of n jobs on parallel machines. In-
compatibilities between jobs are represented by a con-
flict graph G = (V,E), where V is the vertex set rep-
resenting the jobs and E is the edge set. If (i, j) ∈ E,
the jobs i and j cannot be scheduled simultaneously
(i.e., their processing periods cannot overlap). With
each job i is associated an integer processing time pi,
and preemption can only take place at integer time
points. The problem is to assign pi time slots to each
job i, so that no incompatible jobs are assigned to
a common time slot. There is no constraint on the
number of machines.

Incompatibilities between jobs arise when some scarce
resources are required to process jobs (e.g., expensive
tools to equip the machines, employees with specific
skills). The authors in [1] mention three concrete ex-
amples of such scarce resources: the sirup tanks in
drinks bottling, the testing heads in semiconductor
industries, and some specific employees in car pro-
duction lines. The tooling constraints are particu-
larly relevant in flexible manufacturing systems [8].
We consider here the special case where each resource
exists in a single exemplar: two jobs are incompatible
if they require a common scarce resource.

In problem (P), allowing preemption is a way to im-
prove the makespan. It is assumed that a job can
be stopped and restarted later without encountering
additional costs. However, preemptions are often un-
desirable, either because of managerial reasons or be-
cause of the resulting work in progress. To reduce the
negative impacts, the sum of throughput times (de-
fined as the completion time minus the starting time)
over all jobs should be minimized.

Problem (P) can be seen as a multicoloring problem
(MP), which consists in assigning pi different colors
to each vertex of G such that no two adjacent ver-
tices are assigned a common color, while minimizing
the number of used colors. A correspondence between
(MP) and (P) is straightforward. A vertex i repre-
sents a job i, an edge (i, j) means that jobs i and
j are incompatible, and a color stands for a time
slot. The reader is referred to [4] for pointers on
the graph (multi)coloring literature. In this paper,
the graph terminology (e.g., vertex, edge, color) and
the scheduling terminology (e.g., job, incompatibility
constraint, time slot) will be indifferently used.

The paper is organized as follows. Section 2 presents
a short literature revue. A linear formulation is pro-
posed in Section 3. Then, heuristic methods are de-
scribed in Section 4, while Section 5 reports the re-
sults of numerical experiments. A conclusion and av-
enues for future work close the paper.

2 Literature review

The reader interested in a general and recent book
on scheduling is referred to [11]. The authors in [6]
study the problem of minimizing the makespan when
scheduling parallel machines with job incompatibili-
ties and give approximation methods for some spe-
cial cases. An exact algorithm is also reported for
two machines and job processing times of one or two

Page 1

time units. The problem is shown to be NP-hard
with processing times in {1, 2, 3, 4}. In addition, the
authors study dynamic job arrivals. The work in [2]
extends these results by showing that the problem
with two machines and processing times in {1, 2, 3}
is NP-hard. They also show that the problem with
two machines and processing times in {1, 2} becomes
NP-hard when release dates are considered. An ex-
act algorithm working in polynomial time is obtained
for unit processing times by exploiting a bi-partite
agreement graph (complement of the conflict graph).
Finally, lower bounds and heuristics are derived for
the general case. In [9], an exact method is proposed
for scheduling two different sets of jobs on two dif-
ferent machines, with incompatibilities between jobs
of each set (bipartite conflict graph). The three last
papers do not consider preemption, as opposed to the
work in [4] where the problem of scheduling parallel
machines with preemption, incompatibility penalties
and assignment costs is addressed. Exact methods
and meta-heuristics are proposed to solve this prob-
lem. In [12], exact methods and meta-heuristics are
reported for a parallel machine scheduling problem
with preemption, job incompatibilities and job rejec-
tion penalties (for jobs that are not performed). The
hierarchical objective function consists in minimizing
the sum of rejection penalties, the number of inter-
ruptions and the sum of throughput times over all
jobs. We extend this work here by considering that
the makespan has to be minimized as well and that
all jobs have to be performed. Since the objective
function of problem (P) is very different from those in
[4, 12], the existing methods cannot be easily adapted
and new dedicated methods have been designed.

3 Linear program

A linear program LP derived from [12] is given below
with the following variables: Maxi (rep. Mini) de-
notes the largest (resp. smallest) time unit assigned
to job i; sit equals 1 if job i starts or is resumed (after
preemption) at time unit t, 0 otherwise; ut equals 1
if time unit t is used, 0 otherwise; and xit equals 1
if job i is processed during time unit t, 0 otherwise.
The makespan is denoted Cmax. For formulation pur-
poses, a straightforward upper bound U on Cmax is
used which is equal to n · pmax, where pmax denotes
the largest processing time over all jobs.

The three objectives to be minimized are the follow-

ing (and are considered in this order):

f1 = Cmax, f2 =
∑
i∈V

U∑
t=1

sit − n, f3 =
∑
i∈V

(Maxi −Mini)

In f2, subtracting n withdraws the number of job
starts, given that sit = 1 for each job interruption
and for each job start. The problem is solved once for
each objective, starting with f1, then f2 and finally
f3. Once the optimal value of objective fi has been
determined, it is used as a constraint to solve the
next objective. The constraints of problem (P) are
the following:

U∑
t=1

xit = pi i ∈ V (1)

t · xit ≤ Maxi 1 ≤ t ≤ U, i ∈ V (2)

t·xit+U ·(1−xit)≥Mini 1 ≤ t ≤ U, i ∈ V (3)

Cmax ≥ ut 1 ≤ t ≤ U, (4)

sit ≥ xit − xi(t−1) 1 ≤ t ≤ U, i ∈ V (5)

ut = xit + xjt 1 ≤ t ≤ U, (i, j) ∈ E (6)

sit, xit, ut ∈ {0, 1} 1 ≤ t ≤ U, i ∈ V (7)

Mini, Maxi ≥ 0 i ∈ V (8)

Constraint (1) states that each vertex i is colored with
exactly pi colors (i.e., each job is fully performed).
Constraints (2), (3), (4) and (5) set the values of
Maxi, Mini, Cmax and sit, respectively. Constraint
(6) sets the value of ut, and forbids the assignment
of a common color to incompatible jobs (such a con-
straint was also used for the graph coloring problem
[10]). Finally, (7) and (8) are domain constraints.

4 Heuristic methods

In this section, a greedy method GR and a tabu
search TS are proposed to solve (P). Both methods
use a strategy where the number of available time
slots (colors) is fixed to some value k. The aim is
then to find a feasible coloring of the graph using
only k colors (i.e. a k-coloring) which minimizes f2
and f3. Cmax is then the smallest k for which a k-
coloring is found. This strategy is the most efficient
to solve graph coloring problems [3].

GR is an adaptation of DSATUR [5]. The saturation
degree Dsat(i) of a vertex i is defined as the num-
ber of different colors used by vertices adjacent to i,
while the degree deg(i) of i is the number of edges
incident to i. GR starts from a non colored graph,
and colors the vertices one by one. At each step, the

Page 2

vertex i which maximizes Dsat(i) is the next to be
colored. If there are ties, the vertex of largest degree
is chosen in the subgraph obtained with only non col-
ored vertices (ties are broken randomly, if any). To
recolor the chosen vertex i, a set of pi different col-
ors must be selected in the set of available colors Ai

(i.e., colors that are not already used by vertices ad-
jacent to i). If there are not enough available colors
(i.e., |Ai| < pi), the method stops as it is not able to
find a feasible k-coloring. Otherwise, the colors are
selected with the recoloring method proposed in [12]
to find an assignment of colors minimizing f2 and f3
(such a recoloring method is an implicit exhaustive
enumeration method of all possible colorings for the
considered vertex).

The tabu search TS is a local search metaheuristic
where the neighborhood N(s) of a solution s is ob-
tained by performing moves (i.e., slight modifications
to the solution structure). Starting from an initial
solution, TS navigates from one neighbor solution to
the next. A tabu list is used to forbid the reversal of
recently performed moves. Basically, the tabu search
performs the best non tabu move at each iteration.
For more information on tabu search and metaheuris-
tics in general, the reader is referred to [7, 13].

Based on the problem-solving strategy mentioned
above, where the number of colors is gradually re-
duced until no feasible coloring can be found, the
search space of TS contains k-colorings of the graph.
Each vertex i is either colored (i.e. pi colors are as-
signed) or uncolored (i.e., no color is given). The first
objective is then to minimize the number of uncolored
vertices, given that a feasible solution is found when
all vertices are colored. Objectives f2 and f3, how-
ever, remain unchanged.

In TS, the initial solution is generated withGR, and a
move consists in completely recoloring a vertex. How-
ever, the tabu status forbids to recolor a recently re-
colored vertex during t iterations (where t is randomly
chosen between 10 and 20 after each move). Any ver-
tex i (colored or not) can be recolored with a (new)
set of pi colors. The way to select the colors depends
on the number |Ai| of available colors.

• If |Ai| < pi, the move is enforced as follows. All
colors of Ai are first selected. Then the pi − |Ai|
missing colors are selected one by one. When a
color c is assigned to vertex (job) i, the adjacent
vertices using color c are uncolored (rejected).
Thus, at each step, the color which minimizes
the number of additional rejections is chosen.

• If |Ai| ≥ pi, the colors which minimize the num-
ber of interruptions and throughput time are
chosen in a greedy fashion. Obviously, if contigu-
ous colors (contiguous time units) are assigned
to i, no interruption occurs and the throughput
time is minimized. The method is based on this
observation: while the vertex is not fully colored,
the largest set of contiguous colors still available
in Ai is assigned to job i.

5 Experiments

We implemented the heuristics TS and GR in C++.
The linear program LP was solved with CPLEX 12.5.
The methods were run on a computer with a proces-
sor Intel Quad-core i7 2.93 GHz with 8 GB of DDR3
RAM memory. The time limit for LP was set to one
hour for each objective. The time limit for TS and
GR was set to n/20 minutes, where n is the number
of jobs. For each value of k, GR was restarted as
long as the time limit was not reached, and the best
solution obtained was returned at the end. TS and
GR were run ten times for each value of k, starting
with the upper bound U on Cmax. The value of k was
decreased until none of the runs could find a feasible
solution.

To generate the set of test instances, n was chosen
in {10, 25, 50, 100}, and for each value of n, five in-
stances were produced and labeled a, b, c, d, e. The
integer processing times were randomly chosen in
[1, 10]. Incompatibilities between pairs of jobs were
randomly generated by setting the probability to have
an edge between two vertices to 0.5.

Results are shown in Table 1. For LP , the value ob-
tained for each objective is indicated, and the results
proven to be optimal by CPLEX are indicated with a
⋆ sign. For TS and GR, the values of kmin and kmax

are given, where kmin (resp. kmax) is the smallest
value of k such that at least one (resp. ten) success-
ful run(s) were performed. The average values of f2
and f3 are given for kall, which is the smallest value
of k such that TS and GR found at least one feasible
solution. The minimum values of kmin and kmax are
indicated in bold face.

LP can tackle instances with 10 and 25 jobs, but
can only guarantee the optimality for instances with
10 jobs. Given that the lower bounds returned by
CPLEX for instances with n = 50 are poor (i.e., far
from the results obtained by GR and TS), the in-
stances with n = 100 were not tested. GR obtains

Page 3

good results on small instances: for example, optimal
results are obtained for the ten runs with n = 10.
Also, for instances with n = 25, it produces the best
kmin for four instances out of five, and the values of
objectives f2 and f3 are small. But TS is clearly
the best method: it obtains the best kmin for all in-
stances, and the kmax value is smaller than the one
of GR for 12 instances out of 20. Also, the results for
objectives f2 and f3 are clearly better than the ones
obtained with GR for instances of size 50 and 100.

LP GR TS
Cmax f2 f3 kmin kmax kall f2 f3 kmin kmax kall f2 f3

10

a 30⋆ 0⋆ 51⋆ 30 30 30 0 51 30 30 30 0.4 53.6
b 23⋆ 0⋆ 56⋆ 23 23 23 0 56 23 23 23 1.3 64.2
c 25⋆ 0⋆ 64⋆ 25 25 25 0 64 25 25 25 0 64
d 30⋆ 0⋆ 68⋆ 30 30 30 0 68 30 30 30 0 68
e 27⋆ 0⋆ 45⋆ 27 27 27 0 45 27 27 27 0.7 48.5

25

a 41⋆ 0 129 41 41 41 5.5 184.1 41 41 41 8.9 223
b 41⋆ 7 206 42 43 42 16.5 270.5 41 46 42 22.25 273.3
c 40 7 235 40 40 40 18.7 334.9 40 41 40 13.7 254.7
d 37 11 238 37 37 37 16.5 297.4 37 38 37 29.75 310.5
e 40 55 320 41 41 41 13.1 289.6 40 42 41 18.7 295.4

50

a 493 0 261 51 52 51 65.2 829.8 48 50 51 31.4 585.6
b 498 0 264 62 63 62 48.5 833.25 61 64 62 52.4 831.2
c 498 0 302 62 63 62 60.8 1066.8 61 66 62 55.6 892
d 493 0 284 55 56 55 58 919 54 58 55 54.5 848.5
e 493 0 277 54 55 54 62 789 53 56 54 68 911

100

a 93 95 93 170 3086 87 89 93 119.2 2345.2
b 98 100 98 147 2553.2 92 95 98 117.6 2513.8
c 98 100 98 176 3057.5 89 91 98 106.1 2310.9
d 92 95 92 173 2713 86 89 92 111.9 2351.2
e 107 108 107 149.5 3302.8 99 104 107 108.8 2547.8

Table 1: Comparison of the methods.

To see how the objectives are competing, Figure 1
shows – for a representative instance with n = 100
and label d – the variation of f2 (left part) and f3
(right part) for different values of k. As expected,
fewer interruptions are required when the makespan
is larger. Also, we can see that f2 and f3 are linked
even if theoretically, minimizing one does not mean
minimizing the other. Such graphics can be helpful
for practitioners.

Figure 1: Variation of f2 and f3 depending on k, for
instance d with n = 100.

6 Conclusion

We consider in this work a parallel machine schedul-
ing problem with job incompatibilities and three ob-
jectives: makespan, number of job interruptions, and
sum of throughput times over all jobs. We propose

efficient methods taking advantage of the graph col-
oring literature, namely, a linear program, a greedy
heuristic and a tabu search. Future work includes
adaptation of these methods, as well as new meth-
ods, for a problem where the number of machines is
limited.

References

[1] C. Almeder and B. Almada-Lobo. Synchronisation of
scarce resources for a parallel machine lotsizing prob-
lem. International Journal of Production Research,
49(24):7315–7335, 2011.

[2] M. Bendraouche and M. Boudhar. Scheduling jobs on
identical machines with agreement graph. Computers
& Operations Research, 39(2):382 – 390, 2012.

[3] I. Blöchliger and N. Zufferey. A graph color-
ing heuristic using partial solutions and a reactive
tabu scheme. Computers & Operations Research,
35(3):960 – 975, 2008.

[4] I. Blöchliger and N. Zufferey. Multi-coloring and
job-scheduling with assignment and incompatibility
costs. Annals of Operations Research, 2013. doi :
10.1007/s10479-013-1397-1.

[5] D. Brélaz. New Methods to Color Vertices of a
Graph. Communications of the Association for Com-
puting Machinery, 22:251–256, 1979.

[6] G. Even, M. M. Halldórsson, L. Kaplan, and D. Ron.
Scheduling with conflicts: online and offline algo-
rithms. Journal of Scheduling, 12(2):199–224, 2009.

[7] M. Gendreau and J. -Y. Potvin, editors. Handbook
of Metaheuristics 2nd Edition. Springer, 2010.

[8] A. Hertz and M. Widmer. An improved tabu search
approach for solving the job shop scheduling problem
with tooling constraints. Discrete Applied Mathemat-
ics, 65(1–3):319 – 345, 1996.

[9] I. N. Lushchakova and V. A. Strusevich. Schedul-
ing incompatible tasks on two machines. European
Journal of Operational Research, 200(2):334 – 346,
2010.

[10] E. Malaguti and P. Toth. A survey on vertex coloring
problems. International Transactions in Operational
Research, 17 (1):1 – 34, 2010.

[11] M. Pinedo. Scheduling: Theory, Algorithms, and
Systems Third Edition. Springer, 2008.

[12] S. Thevenin, N. Zufferey, and J.-Y. Potvin. A
multi-coloring approach for an order acceptance and
scheduling problem with preemption and job incom-
patibilities. Technical report, CIRRELT-2013-45,
August 2013.

[13] N. Zufferey. Metaheuristics: Some principles for an
efficient design. Computer Technology and Applica-
tion, 3:446 – 462, 2012.

Page 4

